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RMSE: 0.2280
Time: 10:16

RMSE: 0.1436
Time: 2:03:51
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Figure 1: A production scene from Us Again containing 4881396 light sources (analytical lights, emissive triangles, and emissive
volumes), rendered using 32 samples per pixel with uniform light selection (a), locally optimal light selection (b), and our cache
points system (c). Uniform light selection produces a faster result but converges poorly, while building a locally optimal light
distribution per path vertex produces a more converged result but is much slower. Our cache points system (c) produces a noise
level similar to (b) while maintaining performance closer to (a). To clearly show noise di�erences, this �gure does not include
the post-renderer compositing that is present in the �nal production frame. © 2024 Disney
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ABSTRACT
A hallmark capability that de�nes a renderer as a production ren-
derer is the ability to scale to handle scenes with extreme com-
plexity, including complex illumination cast by a vast number of
light sources. In this paper, we present Cache Points, the system
used by Disney’s Hyperion Renderer to perform e�cient unbiased
importance sampling of direct illumination in scenes containing
up to millions of light sources. Our cache points system includes
a number of novel features. We build a spatial data structure over
points that light sampling will occur from instead of over the lights
themselves. We do online learning of occlusion and factor this into
our importance sampling distribution. We also accelerate sampling
in di�cult volume scattering cases.
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Over the past decade, our cache points system has seen exten-
sive production usage on every CG feature �lm and animated short
produced by Walt Disney Animation Studios, enabling artists to de-
sign lighting environments without concern for complexity. In this
paper, we will survey how the cache points system is built, works,
impacts production lighting and artist work�ows, and factors into
the future of production rendering at Disney Animation.
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1 INTRODUCTION
A major challenge in production rendering is light sampling in
scenes containing anywhere from a small number to hundreds of
thousands or even millions of light sources. Furthermore, the types
of lighting scenarios that arise in any particular production are
often unpredictable. A key principle in the design of Hyperion is an
emphasis on simplicity over �exibility [Burley et al. 2017]: we try
not to burden users with non-artistic controls as much as possible.
In accordance with this principle, we prefer systems that are as
su�ciently and automatically robust to as many production sce-
narios as possible; in this paper, we present an in-depth description
of our system for guiding direct light sampling in our production
scenes, from the simplest to the most complex lighting scenarios.
Our system, cache points, builds locally optimal estimates for light
sampling weights and incorporates an online learning metric for
local light visibility estimates. Our system is able to (1) combine lo-
cal estimates for analytical lights, emissive geometry, and emissive
volumes into a single combined system, and (2) provide unbiased
direct light sampling guiding for both surface points and points
inside of participating media. Additionally, we have also extended
our system for use in importance sampling volumetric in-scattering
in participating media. While we have previously alluded to our
cache points system for solving the many-lights sampling problem
[Burley et al. 2018; Fong et al. 2017; Nichols and Eisenacher 2015]
and have described cache points for volumetric scattering [Huang
et al. 2021] at a high level, in this work we present a detailed, in-
depth look into these methods and describe our technique as a
whole (Sections 3 and 4), provide real-world production case stud-
ies (Section 5), and discuss potential future improvements (Section
6).

Figure 2: In addition to normal scenes with up to hundreds of
lights (top), Big Hero 6 featured scenes with anywhere from
thousands of lights (middle), to hundreds of thousands of
lights (bottom). Our cache points system was designed to
e�ciently and robustly perform many-lights sampling in all
of these scenarios. © 2024 Disney

2 MOTIVATION AND RELATEDWORK
Motivation. Production renderers often have to handle scenes

with extraordinary levels of lighting complexity. Disney’s Hype-
rion Renderer was �rst written for the production of Big Hero 6,
which featured nighttime city scenes that contained as many as
half a million small, bright, directional light sources (Figure 2).
Later productions further increased the complexity level by includ-
ing emissive mesh geometry and emissive volumes, resulting in
scenes with millions of discrete light sources if each triangle in
each emissive mesh and each emissive volume is considered sep-
arately (Figure 1). While sampling direct lighting from individual
analytical lights using next event estimation and combining direct
lighting samples with BSDF samples via multiple importance sam-
pling [Veach 1998] is now well understood, automatically choosing
which light to sample out of potentially millions of lights remains
an active area of research.

Manual Light Grouping. One possible solution to managing light-
ing complexity is tasking artists with manually pruning low contri-
bution lights from scenes, or requiring artists to run pilot renders,

https://doi.org/10.1145/3665320.3670993
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gather statistics on light usage, and then build pruning into the pro-
duction pipeline [Vavilala 2019]. However, in the spirit of seeking
simple and e�cient user work�ows, we prefer to avoid any solution
that requires manual intervention or additional pipeline complexity
before artists can focus on creative work. Instead, we seek automatic
in-renderer solutions to handling many-lights scenarios.

Hierarchical Light Trees. Hierarchical tree data structures for
light selection are one of the most commonly used solutions to the
many-lights problem today [Fascione et al. 2018; Georgiev et al.
2018; Gospodnetić 2017; Keller et al. 2017; Kulla et al. 2018; Pharr
et al. 2023]. The particular variant of a hierarchical light tree used
in Kulla et al. [2018] is further described in detail by Conty et al.
[2018]. While we do use a hierarchical light tree approach for clus-
tering triangles within individual emissive meshes, we found that a
hierarchy-based approach had di�culties with certain use cases for
overall global many-lights sampling. Speci�cally, we noticed that
narrow, highly directional IES pro�le based lights were challenging
for light trees to handle. Incorporating complex occlusion informa-
tion into light trees also proved to be intractable. Overall, we see
hierarchical tree data structures as a di�erent but largely compli-
mentary approach to our cache points; we discuss this further in
Section 5.2.2.

Photon Mapping. The core of our cache points data structure con-
sists of a large number of points scattered throughout the scene in
world space, placed in a KD-tree for fast nearest-neighbor lookups.
At a high level, this data structure strongly resembles a photon map
[Jensen 1996, 2001]. However, our cache points di�er from photon
mapping in how the data structure is built and what it stores and
in how it is used. Unlike photon mapping, which places photons
at points throughout the scene using forwards light tracing from
light sources, our cache points are placed throughout the scene
using a combination of sampling points on surfaces and backwards
path tracing from the camera. Our approach of storing cumulative
distribution functions (CDFs) at each point has similarities with
Jensen [1995]; however, instead of storing a rough approximation of
irradiance for guiding importance sampling of indirect illumination,
we store a high-quality estimate of direct illumination for use in
many-lights sampling. Hyperion contains an adaptive photon map-
ping system [Burley et al. 2018]; we discuss how photon mapping
and cache points could potentially be integrated with one another
in Section 6.

VPLs. The many-lights sampling problem historically has also
been extensively studied as part of virtual point light (VPL) methods
[Dachsbacher et al. 2014]. VPL methods focus on solving the indi-
rect illumination problem by discretizing illumination into large
numbers of virtual point lights at path vertices; the contributions
from these point lights must then be summed. Performing this sum-
ming operation without having to loop over every point light is the
focus of Lightcuts [Walter et al. 2005] and other related variations
[Davidovič et al. 2012; Pantaleoni 2019]. Much like VPL methods,
our method’s core data structure is an unstructured collection of
points generated in part from path vertices, but beyond this, we
consider the problem we are focused on to be orthogonal to the
VPL literature. Instead of focusing on gathering illumination from
individual light sources, we consider the problem of selecting an

individual light out of a large set of possible candidates for next
event estimation.

Learning Techniques. Our approach bears a strong high-level
resemblance to later work by Vevoda et al. [2018], which expands
upon Vevoda et al. [2016]. They similarly use a learning technique
to derive light selection probabilities incorporating visibility infor-
mation. However, the details of their approach di�ers greatly from
ours, including their use of a light hierarchy as the underlying data
structure versus our use of unstructured points. Our approach likely
also shares high-level similarities with Nichols [2016], although not
enough detailed information about their approach is available for
us to make a more thorough comparison.

ReSTIR. More recently, reservoir-based spatiotemporal impor-
tance resampling, or ReSTIR [Bitterli et al. 2020], has seen much
active research. The ReSTIR family of techniques [Lin et al. 2022;
Wyman et al. 2023] builds upon resampled importance sampling
[Talbot et al. 2005] to resample lights from candidate sample pools
that are rapidly built by sharing samples spatially and temporally
based on weighted reservoir sampling [Chao 1982], allowing for
rapid e�cient sampling of extremely complex direct lighting sce-
narios in interactive GPU ray tracing contexts. ReSTIR is reliant
on an initial candidate generation strategy for reservoir sampling;
Bokansky et al. [2021] and Tokutshi et al. [2021] focus on this prob-
lem. Another recent work comparable to ReSTIR is Dittebrandt et al.
[2023]. We see our method as potentially complementary to ReSTIR
and similar approaches; if our method was to be adapted into a
progressive format, it could serve as an initial candidate generation
strategy, although additional consideration would need to be given
for dynamic lights.

Path Guiding. Path guiding techniques such as OLPMM [Vorba
et al. 2014], Practical Path Guiding [Müller 2019; Müller et al. 2017],
Zero-Variance Random Walk Guiding [Herholz et al. 2019], and
others [Guo et al. 2018; Herholz et al. 2016; Rath et al. 2020; Ruppert
et al. 2020; Vorba et al. 2020] all rely on learning about illumination
throughout the scene in an online process and building some vari-
ant of a spatial acceleration structure to guide sampling of indirect
illumination. Path guiding techniques are distinct from many-lights
sampling techniques in that path guiding focuses on indirect il-
lumination, whereas many-lights sampling techniques focus on
direct illumination; generally path guiding and many-lights sam-
pling techniques are orthogonal but complementary to each other.
In Hyperion, we use a combination of our cache points system
for direct illumination and optionally Practical Path Guiding for
indirect illumination.

3 CACHE POINTS FOR MANY-LIGHTS
SAMPLING

The cache points system begins with a simple observation: if compu-
tational time and memory were not concerns, then the theoretical
best possible light selection strategy (in terms of minimizing noise)
would be to estimate the contribution from every single light, fac-
toring in occlusion, for each given path vertex and from all of these
estimates, build a single probability distribution from which to
draw a light to sample. We refer to this theoretical best possible
strategy as locally optimal light selection. In practice, this approach
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(a) Production scene (b) Cache point locations overlaid in yellow

Figure 3: A production scene from Encanto (a) containing 38720 light sources (analytical lights, emissive triangles, and emissive
volumes) sampled using cache points (b). Initial cache point placement suggested 388888 candidate cache point locations,
which were pruned down to 48364 �nal cache point locations. For illustrative purposes, in this �gure we only show cache
point locations on surfaces; in actuality we also populate cache points volumetrically in space to support light sampling in
participating media. © 2024 Disney

is infeasible for all but the simplest scenes due to the computational
time required; early tests on Big Hero 6 using this approach resulted
in renders with impressively low noise levels, but long render times
dominated by light selection. Furthermore, factoring in occlusion
when building a locally optimal light selection strategy per path
vertex means that the the computational time required per path
vertex can be highly variable; with large numbers of lights and
di�cult occlusion, the computational time can be orders of mag-
nitude greater than for a simpler strategy (demonstrated in Figure
1), while in other cases the computational time can be a smaller
multiple over a simpler strategy (demonstrated in Figure 4).

Instead of building a perfect locally optimal light sampling dis-
tribution at every path vertex, our system focuses on caching and
reusing local light selection information in a sparse point-based
data structure. Conceptually, our approach can be thought of as
performing lossy compression on a perfect locally optimal light
sampling distribution. Since we use this distribution for sampling
and not direct evaluation of the direct lighting term, the result of
using an approximation of the locally optimal light sampling dis-
tribution is unbiased but trades o� increased noise in return for
less computational workload and memory usage. Our objective is
therefore to decrease computational workload and memory usage
as much as possible, while getting as close to the quality of a perfect
sampling distribution as possible.

3.1 Building and Initializing the Cache Points
Data Structure

Building and initializing the cache point system occurs using the
following steps:

(1) Generate an initial set of candidate spatial locations for plac-
ing cache points

(2) Merge spatially similar candidate locations
(3) Build a light distribution for each cache point
(4) Merge neighboring cache points with similar light distribu-

tions

(5) Blur light distributions between cache points

In this section, we describe each of these steps in detail.

3.1.1 Initial Candidate Point Generation. Our system begins by
generating an initial set of 100,000 candidate points randomly dis-
tributed within the individual bounding boxes of all objects within
the scene. Candidate points are distributed between bounding boxes
proportional to their volume. Note that candidate points are not
placed in the bounding boxes of objects that we will not perform
lighting sampling from, such as area lights or objects with zero
re�ectance. We then trace a small number of pilot paths through
the scene from the camera and select a random subset of path ver-
tices from these pilot paths; additional candidate points are placed
on these path vertices. This includes paths that enter and scatter
through volumes.

To ensure a �xed upper bound on the amount of memory that
the cache points system will use up, we cap the number of candi-
date points generated from pilot path vertices at 1,000,000. This
strategy gives us a good combination of points on surfaces and
points distributed through empty space to account for participating
media.

If our initial seeding process generates fewer than 10 cache
points, we do not bother with the rest of the cache points build
process and instead simply fall back to calculating perfect locally
optimal light distributions per path vertex.

Before we proceed any further, we spatially sort all of these
initially-at-most 1.1 million candidate points and assign each can-
didate point an index. We then place the candidate points into
an initial KD-tree, which allows us to perform nearest-neighbor
lookups to prune the candidate point set into the �nal set of points
we will build light distributions across. Next, we use a two-pass
approach to prune the set of candidate points; the �rst pass occurs
before we build any light distributions, and the second pass occurs
after we have built light distributions for each point that survived
the �rst pass.
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3.1.2 Merging Spatially Similar Points. In the �rst pruning pass,
we merge points that fall within a minimum radius of a pre-existing
point are pruned. Our minimum radius heuristic works as follows:
for each candidate point, we use a kNN search to �nd the 20 nearest
neighboring points within a 1e-5 units radius and merge those
points together into a single surviving candidate point. We perform
this operation by �rst performing a parallel loop where for each
point we �nd its 20 nearest neighbors and then �nd the point with
the lowest index value; all points except the point with the lowest
index are atomically marked for deletion. Next, we perform a serial
loop to remove all points marked for deletion and rebuild the KD-
tree with the surviving points. The choice of 20 as the number of
neighbors to use in this step is somewhat arbitrary; empirically,
this number seems to do a good job of balancing look-up e�ciency
(by avoiding undesirable clustering and reducing the overall point
count) with time taken to distribute and prune the points.

3.1.3 Building Light Distributions. Next, we build a light distribu-
tion at each surviving point from the �rst pass. The light distribution
at each cache point actually consists of two separate distributions:
a nearby light distribution, and a far light distribution. We make
the determination of whether a given light 4 is close or far away
to cache point ? using several metrics. First, we always consider
in�nite lights (dome lights, distant / solid-angle lights) to be far
away. All �nite lights that have a large solid angle relative to the
position of a cache point are considered to be close to the cache
point; we use the following fast heuristic to determine this:

8B#40A (4, ?) = 38BC0=24 (G4 , G? )2  (A? ⇤ ⇡)2 (1)

where G4 is the centroid of the light, G? is the position of cache
point ? , A? is the radius of cache point ? , and ⇡ is an adjustment
term for cache point separation distance, which we have empirically
determined should be set to 4.0 for best results.

We separate nearby lights from further away lights because the
irradiance from nearby lights potentially can be highly varying
relative to position and surface normal direction. The nearby light
distribution places all of its members into a single bin, whereas
the far light distribution is actually made up of seven bins corre-
sponding to seven imaginary sensors at the cache point location:
six oriented planes facing the cardinal directions and one omnidi-
rectional receiver at the center of the point. We loop over all lights
in the scene and estimate the total contribution each light would
make to each sensor ignoring occlusion, and we store a list in each
bin of between 4 to 256 lights that account for up to 97 percent of
the energy reaching the point [Shirley et al. 1996].

We do not precompute anything for the nearby light distribution;
instead, at render-time we build a light selection PDF on-the-�y
for each path vertex over the irradiance contributions from the
nearby lights to the exact path vertex location. We describe this
in more detail in Section 3.3. For each light in the six cardinal
bins in the far light distribution, we directly store a precomputed
irradiance estimate at the cache point location. For each light in the
omnidirectional bin in the far light distribution, we directly store
a precomputed direct �uence estimate at the cache point location.
The omnidirectional bin serves a special purpose: for surfaces that
have a well de�ned normal, estimating irradiance makes sense since

irradiance is integrated over an oriented 2D surface, but for cases
where awell de�ned normal is either di�cult or impossible to de�ne,
we rely on a direct �uence estimate instead since direct �uence is
integrated over a 3D sphere. Since curve-based hair tends to have
extremely complex and rapidly changing surface orientations and
volumetric participating media has no de�ned surface normal, we
use direct �uence for driving light sampling for curves and volumes.

At this stage we only estimate these values for each light but
defer building CDFs and PDFs until render-time cache point lookup.
There are two reasons for this: �rst, as mentioned earlier, for nearby
lights we can build a higher-quality sampling distribution on-the-�y
at render-time, and second, Hyperion supports a sophisticated light
linking system, whichmeans that we cannot determine which lights
to exclude from a light distribution until render-time evaluation of
light linking relationships has been carried out.

3.1.4 Merging Neighboring Points with Similar Light Distributions.
After building a light distribution at each cache point, we perform
a second pruning step that merges nearby cache points that share
similar light distributions. Like in the �rst pruning step, for each
cache point ? , we gather the nearest 20 neighbors within a 1e-5
unit radius. We then calculate an average similarity metric "0E6
between cache point ?’s light distribution and its nearest neighbors’
light distributions. The similarity metric is calculated as follows:
for two given sets of lights � and ⌫, we �nd the intersection of �
and ⌫ (meaning the set of lights that are common to both sets) and
then calculate the similarity metric" as:

" =
2 ⇤ B8I4F486⌘C43 (8=C4AB42C8>=(�,⌫))

B8I4 (�) + B8I4 (⌫) (2)

We denote size of the intersection of set � and set ⌫ as being
weighted because we need to take into account the possibility that
a given light may exist in both sets � and ⌫ but have di�erent
assigned probabilities in each set. So, instead of just counting up
the number of lights in 8=C4AB42C8>=(�,⌫), we instead calculate a
similarity percentage ( for each light, which we de�ne as:

( = 1 � |%⌫ � %� |
2 ⇤

⇣
%�+%⌫

2

⌘ (3)

where %� and %⌫ denote the probabilities for a given light in sets
� and ⌫, respectively. This de�nition for ( works well so long as the
probability for any given light is non-negative, which we guarantee
since Hyperion’s lights only permit positive emission values; for
systems where lights support negative emission values [Foundation
2024], a modi�ed metric would be required. The weighted size of
the intersection of sets � and ⌫ is then de�ned as the sum of (
for every light in the intersection. This approach for calculating a
similarity metric between light distributions is somewhat ad-hoc,
but in practice we have found that this approach works well."0E6
is then de�ned as simply the sum of" for every nearest neighbor
cache point to ? divided by the number of nearest neighbors found.

Next, we calculate the average distance between cache point ?
and its gathered nearest neighbors; we assign this average distance
as an initial guess for the radius of cache point ? . We then adjust
the radius of the cache point to take into account how similar
the cache point is to its nearest neighbors; this is done by simply
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(a) Uniform Light
Selection

(b) Locally Optimal (c) Cache Points (Ours)

RMSE: 0.0896
Time: 12:02

RMSE: 0.0321
Time: 17:48

RMSE: 0.0320
Time: 15:01

Figure 4: A production scene from Encanto containing 38720 light sources (analytical lights, emissive triangles, and emissive
volumes) with complex occluding geometry with opacity masks, rendered using 32 samples per pixel with uniform light
selection (a), locally optimal light selection (b), and our cache points system (c). Building locally optimal distributions on-the-�y
performs relatively well in this case, while our cache points system performs no worse in terms of sampling quality while still
requiring less render time. © 2024 Disney

multiplying the radius by"0E6 . Since a smaller"0E6 value indicates
that the light distribution in ? is relatively dissimilar from its nearest
neighbors, meaning the direct illumination radiance �eld in this
area of space changes at a higher frequency, shrinking the sphere of
in�uence for ? makes sense, and vice-versa. To prevent the radius
reduction from inhibiting the e�ectiveness of a cache point, we limit
this to 25% of the original size in world space and also guarantee a
minimum projected screen space size (equivalent to 3 pixels).

Finally, we loop over the nearest neighbors found earlier within
?’s adjusted radius; for this subset of nearest neighbors, we preserve
the point with the lowest index and atomically mark for deletion all
of the other points in the subset. Since the radius is adjusted for sim-
ilarity between cache point light distributions, we consider points
that are inside of the adjusted radius to have light distributions that
are su�ciently similar that they can just be merged.

All of the above in the second pruning step is performed in a
parallel loop over all cache points; a serial loop is then performed
to remove all cache points marked for deletion. After we have the
�nal set of cache points, we rebuild the KD-tree a last time for use
during rendering.

3.1.5 Blurring Light Distributions Across Cache Points. After build-
ing light lists at each cache point and merging points with similar
light distributions, the last step in our cache points data structure
build process is to blur, or aggregate, far light distributions between
cache points. This blurring steps allows each cache point’s far light
distribution to be in�uenced by the far light distributions in neigh-
boring cache points, which serves to make all cache point light
distributions more spatially conservative; this step allows us to
safely only look up a single cache point per path vertex during
path tracing. We don’t blur the nearby light distributions since the

change in nearby light distributions between neighboring cache
points is often higher frequency than the change in far light distri-
butions.

The blurring step for a given cache point ? begins by �nding the
closest 16 neighboring cache points to ? via kNN search. Note that
in previous steps we used 20 neighbors for kNN search operations
but in this step we choose 16; the rationale behind 16 is as follows.
The maximum number of spheres of equal size that can be densely
packed around another sphere of the same size in three dimensions
is 12 [Dai et al. 2019; Hales et al. 2017], in either a face-centred
cubic or hexagonal close packing con�guration [Conway and Sloane
1999]. However, since our cache points have variable radii, we add
an additional 4 points to the maximum perfect packing number of
12 as an empirically determined adjustment factor.

With our 16 nearest neighbors gathered, we next �nd the distance
to the farthest gathered neighboring point 35 0A ; we use 35 0A to
determine the relative contributions of each of the gathered cache
points to cache point ? . To cache point ? we assign a relative weight
of 1, and to the closest gathered neighboring point we also assign
a relative weight of 1, while the farthest gathered neighboring
point is assigned a relative weight of 1/16. For point ?= in between
the closest and farthest points, the relative weight is assigned as
follows:

F486⌘C (?=) =<8G

 
1,

1
16

,
38BC0=24 (G, G=)2

(35 0A )2

!
(4)

We then normalize the relative weights to add up to 1; the reason
the farthest point is assigned a relative weight of 1/16 is to ensure
that after normalization, cache point ?’s 16 gathered neighbors will
account for at least half of ?’s �nal blurred light distribution. For
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(a) Uniform Light
Selection

(b) Cache Points,
No Visibility

(c) Cache Points,
Learned Visibility

RMSE: 0.0675
Time: 19:10

RMSE: 0.0407
Time: 19:34

RMSE: 0.0369
Time: 19:35

Figure 5: A production scene from Encanto containing 4406 light sources (analytical lights, emissive triangles, and emissive
volumes) with complex occlusion, rendered using 32 samples per pixel with uniform light selection (a), cache points with no
learned visibility estimates (b), and cache points with learned visibility estimates (c). In this scene, using learned visibility
estimates results in a 9.3% improvement in RMSE for little to no additional render time. © 2024 Disney

each of the 16 gathered neighbors, we then take all lights from
the neighbor’s light distribution, multiply them by the neighbor’s
normalized relative weight, and add those lights into ?’s light distri-
bution. After blurring the light distributions between neighboring
points, we leave the light distributions un-normalized and do not
calculate CDFs yet; we postpone this step until we actually perform
light sampling because we interpolate between the light distribution
for each cardinal bin.

Note that in this step, in order to allow for parallel processing
and in order to avoid repeated blurring of the same points, we
cannot perform blurring in-place in memory; instead, we need to
write the output blurred cache points to a new set of cache points
and swap the memory afterwards.

3.2 Online Learning for Visibility Estimates
3.2.1 Visibility Estimates by Tracking Sample Ratios. Cache points
are initially built without factoring in occlusion information; during
the course of rendering, we improve sampling by learning a per-
light visibility estimate at each cache point. Our approach bears
some conceptual similarity to importance caching [Georgiev et al.
2012]. Each time we select a light from a cache point, we increment
an internal sample attempt counter for that light within that cache
point. We then perform direct lighting and in the event that the
sample successfully reaches the light and receives a useful light
contribution, we atomically increment an internal successful sample
counter for that same light within that same cache point. Hyperion
uses a batched wave-front path tracing architecture where the
rendering process is divided up into a number of discrete iterations
[Eisenacher et al. 2013]; between iterations, we use the ratio '
between successful samples �BD224BB and total sample attempts
�C>C0; towards a given light to adjust the sampling weight of that

light; lights with a lower ratio of successful sampling attempts are
weighted down while lights with a higher ratio are weighted up.
This process e�ectively corrects for cases where a bright light is
initially identi�ed as being important to a particular region of space
but ends up not being important due to shadowing. The speci�c
mechanism we use to assign every light 4 in a cache point ? a
visibility weight, (?, 4) based on the successful sampling attempt
ratio ' is as follows:

'(?, 4) = � (?, 4)BD224BB + 1
� (?, 4)C>C0; + 1

(5)

, (?, 4) =
( ⇣

' (?,4 )
'<8=

⌘2
'(?, 4)  '<8=

1.0 otherwise
(6)

'<8= is a minimum ratio threshold; when ' falls below '<8= ,
we consider the light 4 as being e�ectively completely shadowed
at cache point ? and therefore a candidate for down-weighting.
From production experience, we empirically determined 0.04 to
be a good default value for '<8= . Importantly, since cache points
are relatively sparsely distributed and therefore cannot capture
high-frequency shadow detail, in order to maintain an unbiased
result we must ensure that the visibility metric can never weight a
light’s selection probability down completely to zero [Ward 1991].
To guarantee that down-weighting follows a relatively aggressive
curve but never reaches exactly zero, we choose a quadratic fallo�
(Equation 6).

A single scalar visibility weight per light and quadratic fallo�
are relatively simple, but even so, we have found that in complex
shadowing cases, the use of our visibility metric combined with the
relatively high density of cache points can noticeably improve noise
over no visibility metric at all. For example, in a room lit by sunlight
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through small windows, our visibility estimate signi�cantly reduces
noise by weighting down the otherwise high selection probability
for a bright sun in most of the room, while leaving the selection
probability high in small pools of sunlight.

3.2.2 Blurring Visibility Estimates Across Cache Points. After we
calculate an individual visibility per light per cache point, we then
blur the visibility weights between cache points in a manner analo-
gous to the light distribution blurring process described in Section
3.1.5. Using the same rationale as in 3.1.5, we choose the 16 closest
points to the current point ? and assign the gathered neighbors
relative weights using Equation 4. We sum up the relative weights
of all of the neighbors plus 1.0 for ? and invert this sum to produce
a normalization term that we normalize all of the relative weights
by.

For each light 4 in ?’s light distribution, we multiply 4’s visibility
weight , (?, 4) by ?’s normalized relative weight, and then we
loop through all of the neighbors and if a neighboring point’s light
distribution also contains that light, we take the visibility weight
, (?=, 4) for that light in that neighbor, multiply by that neighbor’s
normalized relative weight, and add that weight to ?’s visibility
weight for 4 .

Blurring the visibility weights allows us to prevent sharp discon-
tinuities in noise at the boundary between cache points from when
the visibility term to a given light changes dramatically between
neighboring cache points.

The e�ect of the online learned visibility estimate system is that
renders with complex occlusion initially converge slowly, but as
the learning system’s quality improves during the renderer’s initial
iterations, the convergence rate improves as the renderer is able to
make better and better light selection decisions. Since the visibility
estimate is just another metric that feeds into the cache point update
mechanism, utilizing visibility estimates adds little to no additional
overhead to the system (Figure 5).

3.3 Light Selection from Cache Points
At each path vertex, we perform light selection by �rst selecting
the nearest cache point to the path vertex via kNN search; because
the light distribution blurring step in the build process results in
every cache point already containing information from its neigh-
boring cache points, we can get away with only selecting a single
cache point per path vertex. For volumetric scattering, in order to
avoid excessive or redundant cache point lookups, we also store
the previously used cache point and re-use it if the current path
vertex is still within that cache point’s radius.

For a path vertex on a regular surface, we loop over the lights in
the cache point’s nearby light distribution and evaluate the irradi-
ance contribution for the exact path vertex location, and for lights
in the further away cardinal bins, we approximate the irradiance
by using the stored precomputed irradiance estimate at the cache
point location. The cardinal bins are combined, weighting by simi-
larity between each bin’s cardinal direction and the path vertex’s
shading normal. The weights for the cardinal bins are normalized
to add up to one, which makes sure that the combined weighted
cardinal bins still produce a normalized light distribution. We then
assign a weight to each light in our combined list of lights from the
near and far distributions; we directly use each light’s irradiance

Path Vertex 

A

B

C D

E

F

Light 1

Light 2

Light 3

Figure 6: A simple 2D-example of a cache point system and a
ray looking up a light distribution from a cache point. Each
yellow dot is a cache point, with the radius of each cache
point indicated by the outer yellow circle surrounding the
point; each cache point is labeled with a letter. Cache points
D, E, and F were placed on the surface of the grey object by
path vertices during the intial cache point population phase,
while cache points A, B, and C were placed in empty space by
being distributed inside of a bounding box. A yellow dotted
line from each cache point leads to the most important light
in the cache point’s light distribution. Lights 1, 2, and 3 are
all equal intensity and the same size and shape. Cache points
A, C, and D’s most important light is the closest light, Light
2, while cache points B and E most important light is their
closest light, Light 1. Although Light 1 is closer to cache point
F, cache point F’s visibility estimate over time has learned
that Light 1 is occluded from cache point F, so cache point F’s
most important light is now Light 3. When a ray enters the
scene and hits the grey object at path vertex G , the renderer
looks up the closest cache point to G via kNN search through
the cache point KD-tree and �nds cache point B. From cache
point B, the renderer then learns that the most important
light to sample at path vertex G is Light 1.

estimate as its un-normalized sampling weight. We then remove
any lights that are disabled for the current path vertex through light
linking and add back in any lights that are marked as exclusive to
the current path vertex via light linking. Finally, we multiply the
un-normalized sampling weight for each light by the cache point’s
learned visibility weight for that light.

For a path vertex that belongs to volumetric scattering or that
is on a curve with a hair shader [Chiang et al. 2016], we instead
calculate the direct �uence for the exact path vertex location for
nearby lights and use the omnidirectional bin in the far light distri-
bution to get precomputed direct �uence estimates for far lights.
The direct �uence estimates are then used as the un-normalized
sampling weights, and then we apply the same light linking and
visibility weight adjustments as in the regular surface case.

A CDF and PDF over the sampling weights is then generated,
and the resultant probability distributions are then used to select
a light for next event estimation. Since the light distribution at
each cache point only accounts for at most 97 percent of the energy
reaching the point, we also give each path vertex a small probability
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to randomly select a light from all light sources in the scene. Because
each cache point typically only contains a relatively small number
of nearby important lights, scenes with enormous numbers of lights
become tractable to e�ciently render since the proportion of lights
that need to be considered for a locally optimized light selection
distribution can be capped to a small �xedmaximumnumber. Figure
6 illustrates a simple 2D example of a small cache point distribution
and the renderer using cache points to determine which light to
important sample at a path vertex.

One interesting side e�ect of our cache points method is that
despite the small additional overhead required for initializing the
cache points system and the per-path-vertex overhead of looking
up a cache point, sometimes renders using cache points can still be
competitive in render time to renders utilizing a less optimal but
less computationally complex light selection strategy; this is the
case in Figure 5. This e�ect tends to occur in scenes with extreme
complex occluding geometry; cache points can e�ectively steer
the renderer away from needlessly casting shadow rays through
complex occluding geometry, improving overall shadow ray tra-
versal performance. Occluding geometry with opacity masks tends
to make this performance di�erence even more dramatic, since
evaluating opacity masks adds additional shading complexity on
top of increased traversal complexity for shadow rays.

At this point, an advantage of our approach with respect to han-
dling in�nite lights becomes clear. In hierarchy-based approaches,
in�nite lights are often a special case that needs to be handled in
an ad-hoc manner because in�nite lights, by their nature of having
no de�nable surface area or location in space, cannot have well-
de�ned bounding boxes and therefore cannot be easily included in a
BVH or any other kind of spatial acceleration structure. As a result,
hierarchy-based approaches typically have to de�ne some mecha-
nism for deciding the ratio of light samples to send towards �nite
lights in the light hierarchy versus light samples to send towards
in�nite lights. However, since our approach builds a spatial data
structure over the points we want to perform light sampling from
instead of over the lights themselves, we can handle in�nite lights
just like any other �nite light type in the far light distribution and
correctly weight in�nite lights in our �nal per-path-vertex light
selection PDF.

4 CACHE POINTS FOR VOLUMETRIC
SCATTERING

In addition to using cache points for learning optimal local light
selection distributions, we also use the cache points system to learn
distributions for importance sampling volumetric in-scattering.
When combined with an extension we have made to null-collision
theory for e�ciently gathering emission from heterogeneous vol-
umes, our cache point strategy for volumetric in-scattering gives
us the ability to e�ciently render previously di�cult cases such as
highly emissive volumes with low extinction (e.g. �re and �ames)
embedded in optically thin media, or thin anisotropic media with
highly directional direct lighting (e.g. god rays and light shafts).

Figure 7: Production frames from some our recent �lms de-
picting scenes containing huge numbers of lights. Our artists
routinely create huge number of lights for e�ects ranging
from vast city scapes to magical sparkles and particles; cache
points allows us to render all of these scenarios e�ciently. ©
2024 Disney
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Figure 8: Scattering sample weight computation (a) and distance sampling CDF built on-the-�y from cached PDFs (b).

4.1 Null-collision Review
To best describe how we use cache points for importance sampling
volumetric in-scattering, we must �rst brie�y review the role in-
scattering plays in volume rendering. We �rst review the null-
collision integral formulation of the volume rendering equation,
which evaluates the radiance at location x in direction l within
distance 3 :

!(x,l) =
π 3

0
)̄ (x, y)

�
`0 (y)!4 (y,l) + `B (y)!B (y,l) + `= (y)!(y,l)

�
3C, (7)

where y = x � C ⇥ l . Null-collision techniques add imaginary
null particles to heterogeneous volumes, producing an imaginary
homogeneous volume through which free-�ight distances along
rays can be analytically sampled with a PDF proportional to the
combined transmittance )̄ formed by a constant combined extinc-
tion coe�cient ¯̀. ¯̀ in turn is the sum of volume coe�cients of
three types of possible events: absorption `0 , scattering `B and null-
collision `= . These events can then be selectively evaluated using
Monte Carlo estimators with probabilities %B (for scattering events),
%0 (for absorption events), and %= (for null-collision events).

4.2 Volumetric In-scattering Sampling
We use our cache points system to learn an important term in Equa-
tion 7: product of scattering `B and in-scattered radiance !B , which
combined gives the result of volumetric in-scattering. During the
cache point initialization process when we loop over every light for
every cache point, in addition to estimating the total contribution
the light makes at each cache point, we also calculate a scattering
sample weight B , which approximates the integral of the product of
`B (y), incoming radiance !(y,l0) and phase function d (y,l,l0)
over solid angle, where y is a randomly sampled location within
the cache point’s radius of in�uence and l 0 and l are directions
from y to a randomly sampled location on the light source and to
the camera origin respectively (Figure 8a). This weight B is stored
per light per cache point (Figure 8b).

During volumetric path tracing, we query the nearest cache
points along the ray and use the weight B stored in each cache point
to build a piece-wise linear 1D CDF to draw scattering samples from
Figure 8b. Since building this 1D CDF can represent a large amount
of overhead per ray in some scenarios, we currently only use this
sampling strategy for direct lighting samples along camera rays.
Limiting the use of this technique to only camera rays still allows us
to noticeably improve visually prominent single-scattering e�ects
while keeping the overall performance overhead low.

To e�ciently render cases such as high-order scattering in opti-
cally thick volumes, we combine our technique with conventional
transmittance-based sampling using multiple importance sampling
(MIS) [Miller et al. 2019]. We start by using the 1D CDF to pick a
scattering point ?B4;42C (G: ), and then we use ratio tracking moving
towards the scattering point to update the path’s PDF. This pro-
cess is repeated until distance sampling steps the ray through the
selected scattering point; we can represent this process as:

?202⌘4?>8=C (Ḡ) =?B4;42C (G: ))̄ (G0, G1) ¯̀(G1))̄ (G1, G2)
¯̀(G2))̄ (G2, G3) ...D̄ (G:�1))̄ (G:�1, G: ) (8)

where each )̄ (G=, G=+1) ¯̀(G=) is the result of step =. To formulate
the same path using null-collision tracking to get the PDF, we use
the sampled distance and ¯̀ to compute )̄ , and we already know %=
and %B based on our choice of tracking algorithm. For all of the path
vertices found before our selected scattering point, we apply the
PDF %= and repeat the distance sampling process and update the
corresponding PDFs until we reach the selected scattering point
and apply PDF %B ; this process gives us:

?=D;; (Ḡ) =)̄ (G0, G1) ¯̀(G1)%= (G1))̄ (G1, G2) ¯̀(G2)
%= (G2)...)̄ (G:�1, G: ) ¯̀(G:�1)%B (G: ) (9)

While the path PDFs represented by Equations 8 and 9 look very
long, most of the terms cancel out to form a much simpler �nal
expression for the MIS weight:



Cache Points for Production-Scale Occlusion-Aware Many-Lights Sampling and Volumetric Sca�ering DigiPro ’24, July 27, 2024, Denver, CO, USA

Figure 9: A scene consisting of bright lights embedded in a heterogeneous volume with low (top) and high (bottom) extinction
coe�cients. Null-collision tracking alone (left) does not work well with thinner volumes; our cache points based technique
(middle) performs well with thin volumes but has trouble with thicker volumes. Combining both techniques through multiple
importance sampling (right) e�ciently samples both the thin and thick volume cases. Results shown are equal sample. © 2024
Disney

?=D;; (Ḡ) : ??A>14B (Ḡ) =%= (G1) ...%= (G:�1)
¯̀(G: )%B (G: ) : ?B4;42C (G: ) (10)

We demonstrate our technique working in conjunction with
conventional null-scattering through MIS in an equal-sample com-
parison in Figure 9 and in an equal-time production comparison in
Figure 10.

Compared to equi-angular sampling [Kulla and Fajardo 2012],
our cache points based method performs better when rendering
highly anisotropic volumes since our approach e�ectively factors
in the phase function term. Additionally, our approach bypasses the
need to sample a light vertex before performing distance sampling,
instead, we rely on the cache points system’s scattering sample
weight B as a global estimate of direct illumination.

4.3 Volumetric Emission Sampling
In the case where a highly emissive heterogeneous volume is em-
bedded in thin anisotropic media, our cache points method for
sampling volumetric in-scattering needs to be combined with a
method for e�ciently gathering volumetric emission. The reason
an additional method for gathering emission is required can be seen
in how ¯̀ typically chosen: as the majorant of `C = `0 + `B and with
medium events chosen with probabilities %C = `C

¯̀ , %0 = `0
¯̀ , and

%B =
`B
¯̀ . In cases where the volume emission function is strongly

uncorrelated with the extinction function, such as in the case of
highly emissive volumes with low extinction, null-tracking is likely
to entirely step over potentially highly emissive regions.

We take advantage of the observation made by [Kutz et al. 2017]
that ¯̀, %0 , %B , and %= can be treated as arbitrary uncorrelated param-
eters as long as their contributions are counter-balanced by appro-
priate sample weights. To force ratio tracking [Novák et al. 2014]
to take more steps in highly emissive regions, instead of setting ¯̀

to the local maximum of `C , we choose ¯̀ as ¯̀ =<0G (`C , `0!4 ). We
always set ¯̀ to be smaller than the average voxel sxize in order to
avoid an excessive number of lookups within a single voxel. Since
absorption and null-collision events don’t require tracing new rays,
we set %0 = %= = 1, which results in the tracker gathering emission
at every free-path sample, producing a higher quality emission
estimate per ray (Algorithm 1).

Algorithm 1
1: function ��������E�������(x,l,3)
2: F  1, !4  0
3: repeat
4: �C  � ;= (1�Z )

¯̀
5: x x � �C ⇥ l
6: !4  !4 + F ⇥ `0 (x)⇥!4 (x)

¯̀

7: F  F ⇥ `= (x)
¯̀

8: until (C  C + �C ) > 3
9: return !4
10: end function

Next, in order to make our technique usable for next event esti-
mation, we need a way to not just better evaluate emission from a
heterogeneous volume, but also sample and evaluate the PDF of a
sampled direction. To do the above, we begin by extending Villemin
& Hery [2013]: we use an emission-energy-distribution grid, which
is just a coarser version of the volume, in order to make sure that
more emissive regions of the volume have a higher chance of re-
ceiving light samples. In Villemin & Hery [2013], point sampling
is used, but point sampling can be sub-optimal when emission is
occluded by heavy smoke or when the emissive region is large; in
these cases, high sample counts are required to capture emission
details in glossy re�ections. Instead, we use our emission-optimized
tracker to evaluate every tracking point along the ray, gathering
more information in each light sample, e�ectively performing line
integration. Finally, in order to use MIS to combine BSDF samples
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(a) Spec/Decomp
Tracking

(b) With Scattering
Sampling

RMSE: 0.0423 RMSE: 0.0336

Figure 10: A production scene from Raya and the Last Dragon containing a small bright light source embedded in a thin
heterogeneous volume. Equal-time comparison of a conventional null-collision approach utilizing spectral-decomposition
tracking (left) and incorporating our cache point based in-scattering sampling via MIS (right). Combining our cache points
based in-scattering sampling with null-collision tracking produces a robust technique that works well both further from (top
two rows) and closer to (bottom row) small bright light sources. © 2024 Disney

with our emissive volume light samples in the solid angle domain
[Simon et al. 2017], we track which cells in the emission-energy-
distribution grid that the light sample ray has passed through and
integrate PDFs stored in each of these cells using a Jacobian trans-
form:

?f (l) =
π 1

0
?G (C)C2dC

= %0 (C31 � C30 )/3 + %1 (C32 � C31 )/3 + %2 (C33 � C32 )/3 (11)

We summarize this approach in Algorithm 2.
We combine our cache point based volumetric in-scattering sam-

pling approach and our volumetric emission sampling approach
using MIS to produce a single uni�ed volume integrator, allowing
us to e�ciently sample strong light sources embedded in hetero-
geneous volumes with either low or high extinction coe�cients
(Figure 11).

Algorithm 2
1: function ���E�������(x,l)
2: ? = 0
3: for voxel v along ray(x,l) do
4: [C0, C1]  v entry/exit

5: ?  ? + (C31 �C
3
0 )

3 ⇥ pdf(v)
6: end for
7: return ?
8: end function

5 PRODUCTION EXPERIENCES AND
DISCUSSION

We have used our cache points system as the default light selection
strategy on every �lm rendered using Disney’s Hyperion Renderer;
over the past decade, we have rendered millions of �nal frames and

several orders of magnitude more work-in-progress frames using
this approach with great success. Since the cache points system is
enabled by default and all of its build processes are automatically
carried out at renderer startup with no additional user interven-
tion, user input, or user guidance required, our artists have not
had to concern themselves with the number of lights they place
in a scene. The cache points system has allowed us to meet art
direction requirements calling for scenes with enormously complex
illumination in many of our recent �lms without requiring any
additional intervention from our TDs or the rendering team; see
Figure 7. For example, the pier sequence from Us Again (Figure
1) contains approximately 4.8 million light sources; lighting and
rendering process for this sequence was so routine and uneventful
thanks to the cache point system that we did not realize how many
lights were in this scene until after the sequence was completed.

All of the above is possible due to the large amount of e�ort that
has gone into making cache points production-ready. Building a
production-ready system requires considering how a system needs
to �t into daily artist work�ows and demonstrating a clear advan-
tage in real-world production cases; we discuss some of these topics
in Section 5.1. Another part of what makes a production-ready
system production-ready is simply experience through real-world
usage. In real-world usage, the challenging cases and failure cases
are often just as interesting as the success cases (if not more so!); in
Section 5.2 we provide several case studies of interesting challenges
and failure cases we have encountered in production.

5.1 Performance Results and Determinism
When deploying novel rendering techniques in a production set-
ting, the trade o� between added overhead in both render time
and memory versus overall bene�t in terms of both convergence
and artist work�ow is a critical part of deciding whether or not
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(a) Spec/Decomp
Tracking

(b) With Emission 
Sampling

(c) With Emission+
Scattering Sampling

RMSE: 0.0820 RMSE: 0.0594 RMSE: 0.0473

Figure 11: A production scene from Raya and the Last Dragon lit by torches (modelled as emissive heterogeneous volumes)
embedded in thin anisotropic heterogeneous mist. Equal-time comparison of a conventional null-collision approach utilizing
spectral-decomposition tracking (left), incorporating our emission sampling strategy (middle), and additionally combining
with our scattering sampling strategy via MIS (right). In areas surrounding the emissive heterogeneous volumes (top two rows),
combining our emission and scattering sampling strategies produces a signi�cant improvement over emission sampling alone,
while in areas lit by the emissive volume but without as much thin mist (bottom row), MIS ensures that combining our emission
and scattering sampling strategies performs no worse than only emission sampling. © 2024 Disney

the technique is worth deploying in production. Furthermore, de-
terminism and temporal coherence are always major production
concerns as well. In this section, we discuss both of these topics and
present render time and memory measurements from real-world
production examples.

5.1.1 Results on Production Scenes. We have chosen three interest-
ing real-world production scenes to showcase performance results.
The �rst scene (Figure 1) is from our short �lm Us Again and was
chosen because showcases a combination of complex occlusion and
large number of light sources- 4881396 emissive triangles, emis-
sive volumes, and analytical lights in total. The second and third
scenes are from our feature-length �lm Encanto. The second scene
(Figure 4, containing 38720 light sources) is a case where locally
optimal light selection performs relatively well; we chose this scene
to demonstrate that our cache points system is still superior in
overall performance even in a best-case real-world scenario for
locally optimal light selection. The third scene (Figure 5, containing
4406 light sources) demonstrates a case where our learned visibility
estimates become important in making cache points robust even
with complex occlusion. All three scenes contain some amount of
volumetric scattering as well. We carried out out measurements on
a system with dual 18-core Intel Xeon Gold 6254 processors; times
are presented as elapsed wall-clock time, and all measurements
were taken on renders using 32 samples-per-pixel (SPP).

We present measurements of total render time (Table 1), root
mean square error (RMSE) (Table 2), and memory usage (Table 4). In
order to quantify the performance of all sampling approaches in a
single useful number, we present results using time-to-unit-variance
(TTUV), which is de�ned as the variance multiplied by total render
time (Table 3). This metric represents the time in minutes required
to achieve a variance value of 1, which allows us to directly compare

the convergence rates of each technique. For all of the metrics we
present here, lower values represent better performance.

Across all three of our real-world production examples, cache
points shows an absolute advantage over both uniform light selec-
tion and locally optimal light selection in time-to-unit-variance,
which means that cache points will always reach a given desired
noise level faster than any of the other techniques. Even in the scene
from Figure 4, where locally optimal light selection performs well,
cache points is nearly 1.2x faster in time-to-unit variance, while
in the scene from Figure 1, cache points is an order of magnitude
faster in both absolute wall-clock time and in time-to-unit variance.
When compared with uniform light selection, cache points is any-
where from approximately twice as fast to an order of magnitude
faster in time-to-unit variance, which comes from the cache points
system’s ability to maintain RMSE values close to optimally local
light selection while keeping render times close to that of uniform
light selection.

Using online learning for visibility estimates typically provides
a modest but still useful improvement in time-to-unit-variance;
however, when complex occlusion is present (Figure 5), we see
that visibility estimates provide a more signi�cant 1.2x speedup in
time-to-unit-variance. Furthermore, the tests presented here are
relatively low SPP renders, during which the visibility estimate
system can only learn a rough approximation of the visibility term;
in practice as the visibility estimate improves, time-to-unit-variance
further improves as well.

Building the cache points data structure does add some overhead
to the renderer’s time-to-�rst-pixel, and storing the cache points
data structure requires additional memory overhead; as seen in
Table 1, time-to-�rst-pixel increases by around a minute, and as
seen in Table 4, additional memory overhead is typically on the
order of a few gigabytes. Relative to typical render times for pro-
duction frames, an additional minute of startup time is typically
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Table 1: Timings for 32 SPP renders using uniform light se-
lection, locally optimal light selection, and cache points. We
present timings for both only the cache point initialization
process (Build) and for the entire render, inclusive of the
initialization process (Total):

Time
(32 SPP)

Us Again:
4881396 Lights

Encanto:
38720 Lights

Encanto:
4406 Lights

Uniform
Selection 10m 16s 12m 2s 19m 10s

Optimal
Selection 123m 51s 16m 32s 24m 21s

Cache Points
(Total) 13m 13.1s 15m 0.5s 19m 35s

Cache Points
(Build) 1m 32s 1m 4s 34s

Speed
vs. Uniform 0.29x Slower 0.37x Slower 0.02x Slower

Speed
vs. Optimal 9.37x Faster 1.10x Faster 1.24x Faster

Table 2: Root Mean Square Error (RMSE) measured at 32 SPP
using uniform light selection, locally optimal light selection,
and cache points. For cache points, we present RMSE both
without and with online learning for visibility estimates
enabled:

RMSE
(32 SPP)

Us Again:
4881396 Lights

Encanto:
38720 Lights

Encanto:
4406 Lights

Uniform
Selection 0.2280 0.0896 0.0675

Optimal
Selection 0.1436 0.0321 0.0377

Cache Points
(No Visibility) 0.1448 0.0339 0.0407

Cache Points 0.1443 0.0320 0.0369

Table 3: Time To Unit Variance (TTUV) measured at 32 SPP
using uniform light selection, locally optimal light selection,
and cache points. For cache points, we present TTUV both
without and with online learning for visibility estimates
enabled:

TTUV
(32 SPP)

Us Again:
4881396 Lights

Encanto:
38720 Lights

Encanto:
4406 Lights

Uniform
Selection 0.5337 0.0966 0.0873

Optimal
Selection 2.5552 0.0184 0.0346

Cache Points
(No Visibility) 0.2769 0.0172 0.0324

Cache Points 0.2753 0.0154 0.0267

Table 4: Memory usage for uniform light selection and cache
points, the di�erence between the two being the total size
of all data structures required for cache points. We do not
separately present memory usage for locally optimal light
selection, since those values are the same as for uniform light
selection:

Memory
Usage

Us Again:
4881396 Lights

Encanto:
38720 Lights

Encanto:
4406 Lights

Uniform
Selection 33.62 GB 45.0 GB 85.6 GB

Cache Points 37.51 GB 46.17 GB 87.05 GB
% Increase 11.57% 2.6% 1.69%

not signi�cantly concerning. Since we place a hard maximum limit
on the number of cache points that the renderer will generate, we
can provide a guaranteed, �xed upper bound for the added mem-
ory overhead. We have generally found that these added memory
overheads are relatively small when compared with the total mem-
ory usage of typical production scenes, and, in all but the simplest
scenes (such as Cornell Box), cache points provide a su�ciently
large advantage in convergence rate to make the added memory
overhead worthwhile.

5.1.2 Determinism and Temporal Coherence. Our cache points sys-
tem is fully deterministic given the same starting random seed and
the same input scene. Because the cache points initialization pro-
cess is highly parallelized, considerable care has to be taken to make
sure that determinism is preserved after parallelized steps. This is
especially true of the steps where we merge spatially similar candi-
date locations, merge neighboring cache points with similar light
distributions, and blur light distributions between cache points; we
have already detailed in the previous sections how sorts between
steps and atomic operations are used to avoid race conditions and
maintain determinism.

We currently do not take any additional steps with respect to
maintaining temporally coherent distributions between frames; we
build a new cache point distribution for every frame. There are two
reasons for this. Firstly, since the system is already deterministic
with respect to random seed, small changes to the input scene gen-
erally only produce small changes to the cache point distribution
that correspond directly to the changes in the scene. Generally, this
property has been enough to maintain consistency across neighbor-
ing frames when rendered using the same starting seed, and since
cache points produce unbiased direct light sampling, any noise
di�erences become immaterial as the image converges. Secondly,
in production, we want to have independent sampling on adjacent
frames, so we seed individual frames in each shot with unique
values. The reason for this is because our production lighting work-
�ows rely extensively on our in-house denoiser’s [Dahlberg et al.
2019; Vogels et al. 2018] advanced cross-frame denoising capabili-
ties, which bene�t from reusing and spreading unique samples per
frame across multiple frames [Zimmer et al. 2015].

In production use, temporal coherence has not been a signi�cant
concern with regards to our cache points system, and we have not
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needed to take further measures to avoid related issues. A rare
exception case is described in Section 5.2.1.

5.2 Case Studies
Over the course of many productions, we have occasionally run
into interesting edge cases that present challenges to the cache
points system. We detail some examples here.

5.2.1 Failure Case: Narrow Spot Lights. On Strange World, we ran
into some issues with using cache points in production scenes
that featured very narrow spotlights inside very large atmospheric
volumes (Figure 12). Rendering using cache points produced frames
with gaps or breaks in the spotlight beams, and these artifacts were
also temporally unstable across many frames. As a result, in these
types of scenes, artists sometimes fell back tomanually disabling the
cache points system, which is a rare situation in our productions.

Upon further investigation, we discovered that the issue was
simply that we were missing cache points in those particular areas
of the spotlights. For the points inside the artifacted areas, the
closest cache points were outside the spotlight beam and so did
not contain the spotlight in their light distributions; therefore, the
probability of sampling the spotlight from the light distribution
was zero and instead the spotlights could only be sampled rarely
using the low probability we reserve to lights outside of the cache
point’s light distribution. Since cache points are initially randomly
distributed throughout the object bounding boxes, the chances of
placing one right within the spotlight cone was rather low, due
to how small the spotlight angle is compared to how large the
surrounding volume is. We do not take into consideration light
positions or directions when seeding the cache points, so there
is no guarantee that we will place cache points in the spotlight
cone. This explains why the artifacts were temporally unstable
across frames: sometimes we would get lucky with the cache point
placement, and sometimes we would get unlucky.

A potential solution to this issue would be to add new cache
points at later iterations of the render. We could use ray hits dur-
ing the later iterations as new cache point candidates and accept
them using a modi�ed version of the approach described in Section
3.1.2. We would then want to update the existing cache points’
distributions to account for the newly added cache points.

5.2.2 Failure Case: Scaling to Billions of Lights. As mentioned in
Section 2, while we do not use a light hierarchy for global many-
lights sampling, we do use light hierarchies for selecting individual
triangles inside of emissive meshes. The cache points system then
treats each emissive mesh as a single light source, as opposed to
directly addressing each emissive triangle within the cache point
system’s light distributions. A major motivating factor for this
choice came from an early experiment duringMoana to place every
emissive triangle directly into the cache point system as a uniquely
addressable light. While this experiment was not a problem for light
sampling at render-time and produced the expected quality with no
major impact on the computational workload of light sampling, this
experiment did result in extremely long cache point build times at
renderer startup. The reason is because we currently simply linearly
loop through all lights in the scene when sorting lights into nearby
and far distributions and when we determine which lights to place

in which cardinal bins in the far distribution. Because we currently
carry out these steps in a linear loop, the cache points system’s
startup time scales poorly as the number of lights in the scene
approaches huge numbers, such as billions of lights. An alternative
approach would be to use a spatial acceleration structure to winnow
down the number of lights that need to be considered when building
the light distributions; one possibility is to simply place the centroid
of every light into a KD-tree and perform kNN searches, while
another possibility is to use a light hierarchy not for many-lights
sampling itself, but instead to drive cache point light distribution
construction.

5.2.3 Challenges in Volumetric Sca�ering. Using cache points to
improve volumetric in-scattering sampling and volumetric emission
sampling has provided a signi�cant improvement in our ability to
e�ciently render complex and di�cult volume setups (Figure 13).
As the visual complexity and richness of our �lms continues to
increase, our artists now routinely �ll most scenes with some form
of thin atmospheric volume to provide additional lighting detail
and shaping. Torches or glowing magical e�ects embedded in thin
volumes and dramatic godrays are both commonplace scenarios
for us; see Figure 13 for some recent production examples where
we made use of cache points for better volume sampling.

However, one major drawback of our current cache points solu-
tion for volumetric in-scattering and volumetric emission sampling
is that the system can add signi�cantly to render time; each sample
per pixel (SPP) is much lower variance but also takes much more
time to compute. As a result, while cache points for many-lights
sampling are enabled by default, we have not been able to enable
cache points for volumetric in-scattering and volumetric emission
sampling by default as well. While there are no additional param-
eters that artists need to set or tune other than simply deciding
whether or not to enable this system when rendering volumes, we
still would prefer artists to not need to even make the decision
to turn the system on or o�. Ideally we would either �nd a way
to lower the per-SPP computational workload of this system, or
derive a mechanism that would allow the renderer itself to auto-
matically enable or disable the system by automatically detecting at
render-time whether or not this system would help in the current
scene.

Another minor drawback of our solution for volumes is that
this system is piggy-backing o� of the cache point locations that
already exist for many-lights sampling and doesn’t do more to
consider additional volumetric parameters when choosing cache
point locations. While cache points are placed at locations where
paths undergo volumetric scattering, we do not do anything to in-
crease cache point density in optically thin media where large free
�ight distances mean cache points can be very sparsely distributed,
and we do not factor in the volumetric emission �eld at all when
selecting cache point locations. Insu�ciently dense cache point
coverage for volumetric in-scattering and emission sampling can
lead to noise discontinuities similar to the case discussed in Section
5.2.1, while overly dense cache point coverage can lead to unneces-
sary increased memory usage. For cases like god rays, a potentially
useful extension would be to add a third seeding mechanism for
cache point locations based on photon tracing from lights. For cases
such as volumetric emission, a potentially useful extension would
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(a) Scene with cache points enabled (b) Scene with cache points disabled

Figure 12: A pared down production scene from Strange World with cache points enabled (a) and cache points disabled (b). The
main focus in this render is on some spotlights and a large atmospheric volume; all other geometry has been matted out. Note
that while the render with cache points enabled generally has less noise than with cache points disabled, there are chunks
missing from the two spotlights in the middle (highlighted with red arrows). © 2024 Disney

be to take individual voxel extents and densities into account when
placing cache point locations inside the bounding box of a volume.

6 FUTUREWORK
We have now utilized our cache points system in many productions
with great success; every production rendered using Disney’s Hy-
perion Renderer to date has done so with the cache points system
enabled by default. However, in the spirit of constantly seeking
to improve artist work�ows, we envision a number of possible
improvements to the cache points system.

Interactivity and GPU Implementation. As interactivity, fast artis-
tic iteration times, and optimal time-to-�rst-pixel becomes increas-
ingly important in all renderer-dependent user work�ows, algo-
rithms that require pre-computation time before the renderer can
begin tracing rays become less and less attractive; as such, we are
interested in progressive formulations of cache points that can
work well in interactive use cases. Instead of building the entire
cache point data structure upfront, we envision that progressively
building the cache point data structure in parallel with the render’s
�rst several SPP could be a promising way to speed up time-to-�rst-
pixel while sacri�cing only a small amount of noise improvement in
the initial set of samples. Also, while our in-house CPU production
renderer has used the cache points system for almost the entire
history of its existence, our in-house interactive GPU path tracer
currently uses a combination of ReSTIR [Bitterli et al. 2020] and
a light hierarchy without occlusion estimates [Estevez and Kulla
2018] for light selection; ideally we would prefer to have the same
light selection strategy across both renderers. To this end, reformu-
lating the cache points system to work well on the GPU for both
build and sampling is a major point of interest for us. We would
also like to experiment with using cache points as the initial light
selection method used to drive ReSTIR.

Alternate Spatial Data Structures. Our cache points system cur-
rently stores points in a KD-tree; we are interested in investigating

better spatial data structures that can either reduce memory foot-
print, improve data structure build times, or improve point search
times. While KD-trees are likely to remain part of the initial cache
points build process due to the need to performmultiple kNN search
operations, at actual path tracing time we only need to look up a
singular cache point per path vertex, making spatial data structures
such as hash grids for storing the �nal render-time cache point
distribution a promising alternative. For a GPU implementation, a
multi-resolution hash grid is especially appealing over a KD-tree
[Davidovič et al. 2014].

Improved Sampling Information. Our system currently does not
utilize joint sampling to take into account the BSDF when perform-
ing light selection [Christensen et al. 2018]; adding this capability
could potentially help in eliminating the need to sample large num-
bers of lights that do not line up with highly glossy BSDFs. In
real-world production scenes, we expect that using a joint sampling
approach in conjunction with our occlusion estimate approach
could lead to signi�cant sampling e�ciency improvements. In a
similar vein: we currently do not consider surface orientation when
merging spatially neighboring cache points during the build pro-
cess; a potential solution could be to factor in a surface normal for
cache points placed on surfaces and allow otherwise nearby cache
points to not be merged if they have highly divergent corresponding
surface normals.

Combining with Path Guiding. Currently we use two separate
systems for guiding direct lighting and guiding indirect lighting;
for indirect lighting, we use Practical Path Guiding [Müller 2019;
Müller et al. 2017]. Unifying systems for guiding direct and indirect
lighting is a worthy goal; to this end, we have investigated com-
bining Practical Path Guiding and the technique from Vevoda et al.
[2018] with promising results.

Combining with Photon Mapping. Hyperion includes a photon
mapping system for rendering refractive caustics. Since this pho-
ton mapping system was implemented after the core of the cache
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Figure 13: Production frames Raya and the Last Dragon uti-
lizing our cache points system for sampling volumetric in-
scattering and volumetric emission. © 2024 Disney

points system was implemented, our cache points system currently
does not leverage any of the capabilities of the photon mapping
system, but these two systems do seem to have complimentary
capabilities. For example, using photons from forward light tracing
to generate candidate cache point locations is a natural extension
of our existing approach and could help with cases like the one in
Section 5.2.1. Our photon mapping system uses an adaptive photon
guiding technique that learns photon emission functions across
light sources throughout the duration of a render, similar to Es-
tevez and Kulla [2020a; 2020b]; combining this adaptive photon
guiding with our learned occlusion estimates in cache points seems
promising. Finally, our cache point locations are chosen up-front
and not further re�ned during throughout the course of the render;
using a mechanism similar to the ones found in PPM [Hachisuka

et al. 2008] and SPPM [Hachisuka and Jensen 2009] to progressively
re�ne cache point locations is a possible approach.

7 CONCLUSION
We have presented Cache Points, a many-lights sampling system
used by Disney’s Hyperion Renderer to render millions of produc-
tion frames over the past decade. We have described in detail how
cache points are populated and novel aspects of the system such as
online learning of visibility estimates, how they are used in light
sampling at render-time, and how we have extended them for use
in accelerating di�cult volumetric scattering cases. We have also
discussed some production experiences, real-world success cases,
and real-world failure cases for our system, along with potential
paths for future improvement.
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